A generalization of the Chandler Davis convexity theorem

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A generalization of the Chandler Davis convexity theorem

In 1957 Chandler Davis proved a theorem that a rotationally invariant function on symmetric matrices is convex if and only if it is convex on the diagonal matrices. We generalize this result to groups acting nonlinearly on convex subsets of arbitrary vector spaces thereby understanding the abstract mechanism behind the classical theorem. We apply the new theorem to a problem from the mathematic...

متن کامل

Another Simple Proof of a Theorem of Chandler Davis

In 1957, Chandler Davis proved that unitarily invariant convex functions on the space of hermitian matrices are precisely those which are convex and symmetrically invariant on the set of diagonal matrices. We give a simple perturbation theoretic proof of this result. (Davis’ argument was also very short, though based on completely different ideas). Consider an orthogonally invariant function f ...

متن کامل

Davis’ Convexity Theorem and Extremal Ellipsoids

We give a variety of uniqueness results for minimal ellipsoids circumscribing and maximal ellipsoids inscribed into a convex body. Uniqueness follows from a convexity or concavity criterion on the function used to measure the size of the ellipsoid. Simple examples with non-unique minimal or maximal ellipsoids conclude this article. MSC 2000: 52A27, 52A20

متن کامل

A GENERALIZATION OF A JACOBSON’S COMMUTATIVITY THEOREM

In this paper we study the structure and the commutativity of a ring R, in which for each x,y ? R, there exist two integers depending on x,y such that [x,y]k equals x n or y n.

متن کامل

A Generalization of Lyapounov's Convexity Theorem to Measures with Atoms

The distance from the convex hull of the range of an n-dimensional vector-valued measure to the range of that measure is no more than an/2, where a is the largest (one-dimensional) mass of the atoms of the measure. The case a = 0 yields Lyapounov's Convexity Theorem; applications are given to the bisection problem and to the bang-bang principle of optimal control theory.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Advances in Applied Mathematics

سال: 2005

ISSN: 0196-8858

DOI: 10.1016/j.aam.2004.09.001